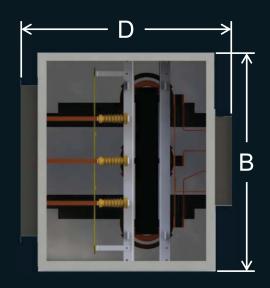


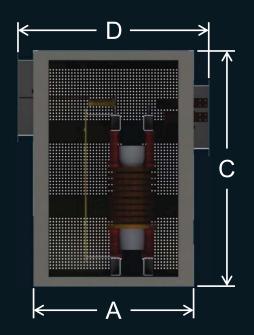
TRANSFORMADORES SECOS DE MEDIA TENSIÓN

Los transformadores secos Zetrak no contaminan, evitan los riesgos de incendio y son libres de mantenimiento, lo que los hace ideales para trabajar en lugares donde laboran o conviven las personas. Se instalan en centros comerciales, edificios de oficinas, hospitales, centros turísticos, la industria en general como: cementera, textil, siderúrgica, petroquímica, etc.

Estos transformadores se fabrican utilizando en cada fase varias bobinas según la clase de aislamiento.

Las descargas parciales se reducen de manera importante al reducir el aislamiento entre capa y capa, debido a que la diferencia de potencial que existe entre capa y capa es mucho menor que si se considerara una sola bobina.




Características:

- Capacidades desde 45 hasta 3000 kVA en clase 5, 15, 25 y 34.5kV, bajo la norma NMX-J-351.
- Fabricados bajo la norma NMX-J-351.
- Devanados de cobre-cobre o aluminioaluminio.
- Aislamientos de clase H para 220°, F para 115° y B para 80°.
- Núcleos con lamina de acero al silicio, de grano orientado.
- Gabinetes Nema 1, Nema 3R y Nema 12.
- Elevación de temperatura 90°, 115°, 130° v 150°.
- Tipo de enfriamiento AN, ANAF y AN/ANAF.

PESOS Y DIMENSIONES

CLASE 5 KV (VPI)						
CAPACIDAD (KVA)	A (mm)	B (mm)	C (mm)	D (mm)	MASA (Kg.) Cu.	MASA (Kg.) Al.
45	1100	1200	1900	1350	700	650
75	1100	1200	1900	1350	800	760
112.5	1100	1200	1900	1350	950	910
150	1400	1200	1900	1650	1220	1070
225	1400	1200	1900	1650	1320	1170
300	1300	1600	2113	1550	2110	1860
500	1300	1600	2113	1550	2210	2060
750	1600	2000	2413	1850	3180	2980
1000	1600	2000	2413	1850	3480	3280
1500	1600	2000	2413	1850	4200	4000
2000	1600	2000	2413	1850	4480	4100

CLASE 15 KV (VPI)							
CAPACIDAD (KVA)	A (mm)	B (mm)	C (mm)	D (mm)	MASA (Kg.) Cu.	MASA (Kg.) Al.	
45	1100	1200	1900	1350	700	650	
75	1100	1200	1900	1350	800	760	
112.5	1100	1200	1900	1350	950	910	
150	1400	1200	1900	1650	1220	1070	
225	1400	1200	1900	1650	1320	1170	
300	1300	1600	2113	1550	2110	1860	
500	1300	1600	2113	1550	2210	2060	
750	1600	2000	2413	1850	3180	2980	
1000	1600	2000	2413	1850	3480	3280	
1500	1600	2000	2413	1850	4200	4000	
2000	1600	2000	2413	1850	4480	4100	

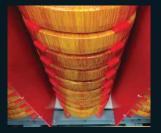
CLASE 25 KV (VPI)							
CAPACIDAD (KVA)	A (mm)	B (mm)	C (mm)	D (mm)	MASA (Kg.) Cu.	MASA (Kg.) Al.	
45	1100	1200	1900	1350	700	650	
75	1100	1200	1900	1350	800	760	
112.5	1100	1200	1900	1350	950	910	
150	1400	1200	1900	1650	1220	1070	
225	1400	1200	1900	1650	1320	1170	
300	1300	1600	2113	1550	2110	1860	
500	1300	1600	2113	1550	2210	2060	
750	1600	2000	2413	1850	3180	2980	
1000	1600	2000	2413	1850	3480	3280	
1500	1600	2000	2413	1850	4200	4000	
2000	1600	2000	2413	1850	4480	4100	

CLASE 34.5 KV (VPI)						
CAPACIDAD (KVA)	A (mm)	B (mm)	C (mm)	D (mm)	MASA (Kg.) Cu.	MASA (Kg.) Al.
45	1100	1600	2113	1550	750	680
75	1300	1600	2113	1550	850	800
112.5	1300	1600	2113	1550	970	920
150	1300	1600	2113	1550	1250	1100
225	1300	1600	2113	1550	1350	1200
300	1300	1600	2113	1550	2110	1860
500	1300	1600	2113	1550	2210	2060
750	1600	2000	2413	1850	3180	2980
1000	1600	2000	2413	1850	3480	3280
1500	1600	2000	2413	1850	4200	4000
2000	1600	2000	2413	1850	4480	4100

Bobinas de baja tensión

Los devanados de baja tensión son fabricados en cobre o aluminio.

El enfriamiento es garantizado con el uso de ductos de enfriamiento, colocados a lo largo de su longitud axial y alrededor de las diferentes capas que forman el devanado.



Bobinas de alta tensión

Son fabricados en discos cuyo número depende de la clase de tensión que el devanado vaya a manejar, el hecho de formar el devanado en discos dará como resultado una disminución de los esfuerzos de tensión entre capas y una disminución en gran medida de los niveles de descargas parciales.

Posteriormente los discos son conectados en serie para lograr una alta capacitancia que nos ayuda a mejorar la distribución de tensión al impulso a través del devanado. La eficiencia en el enfriamiento también es mejorada ya que los devanados son expuestos al aire en una mayor proporción.

Impregnación

Los devanados son precalentados en un horno de secado para reducir el contenido de humedad. El proceso de secado es concluido cuando las bobinas son sometidas a vacío, eliminando la humedad absorbida por el aislamiento durante el proceso de manufactura.

Un barniz epóxico (clase 220°C) es introducido en el tanque bajo vacío, eliminando las burbujas de aire en el barniz.

Núcleo

Cada transformador Zetrak es construido de acero al silicio de grano orientado con bajas pérdidas por histerésis y corrientes de eddy. El acero al silicio es cortado en laminaciones individuales en máquinas de corte automáticas para asegurar dimensiones precisas y consistentes.

Ensamble núcleo-bobinas

Cuando el núcleo y los devanados están listos, se realiza el ensamble núcleo bobinas, asegurando que se forme un grupo resistente a los esfuerzos mecánicos producidos por corto circuitos y garantizando una resistencia dieléctrica durante transitorios de tensión.

Cambiador de derivaciones

Un cambiador de derivaciones de operación sin carga nos ayudará a absorber las variaciones de tensión, haciendo los ajustes necesarios en este dispositivo, hacia arriba (+ 2.5% y +5.0%) o hacia abajo (-2.5% y -5.0%) de la tensión nominal.

Gabinete

Los gabinetes estándar para los transformadores de secos de media tensión Zetrak son : NEMA 1 para servicio interior y NEMA 3R para servicio exterior o de acuerdo a la especificación del cliente, ya sea conforme NEMA o IEC.

PRUEBAS

NUESTRO LABORATORIO ESTA ACREDITADO POR LA ENTIDAD MEXICANA DE ACREDITACIÓN.

PRUEBAS DE RUTINA Resistencia óhmica de los devanados Resistencia de aislamiento (1min) Tensión aplicada e inducida Tensión de impedancia Relación de transformación, polaridad y secuencia de fases Pérdidas y corriente en vacío Pérdidas debidas a la carga Hermeticidad y espesor del recubrimiento Descargas parciales

Las pruebas que se realizan a los equipos son las de rutina que marca la norma NMX-J-285 de acuerdo a la norma NMX-J-169.

CERTIFICADOS

- Acreditación de laboratorio por parte de la entidad mexicana de acreditación (ema).
- Certificación de conformidad de producto por parte de la ANCE.
- Constancia de aceptación de prototipos CFE para transformadores tipo pedestal monofásicos de 100 kVA y trifásicos de 300 y 500 kVA.
- Certificación por parte de LAPEM-CFE para la reparación de transformadores de potencia hasta 30 MVA.
- Certificado de proveedor confiable de CFE.
- Certificado de proveedor confiable de PEMEX.
- Certificado de proveedor confiable de IMSS.

PLANTA TULTITLAN (OFICINAS)

Prolongación Miguel Allende No. 7
Bo. Santiaguito C.P. 54900
Tultitlán, Estado de México
Tel. 0155-5888-44-22
ventaszet@zetrak.com.mx

PLANTA GUATEMALA

Aguilar Batres 57-85 Zona 12 Ofibodega No.10 Cuesta de Villa Lobos Villa Nueva Guatemala Tel. 00 (502) 2326-7474 ventaszet@zetrak.com.mx PLANTA POLOTITLAN
Autopista México-Querétaro
Km133 Parcela 13
San Antonio Celayita C.P. 54200
Polotitlán, Estado de México
ventaszet@zetrak.com.mx

www.zetrak.com.mx

